《分析化学实验》教学大纲

一、课程基本信息

课程类别	学科基础课	课程性质	实践	课程属性	必修			
课程名称	分析化学实验		细和女教 八七八尚帝孙		课程英文名称	Analytical Chemistry		
体往右你	<i>J</i> 77 741 -	产关业	体性关关右称	Experiment				
课程编码	F04XE	321Z	适用专业	环境工程				
考核方式	考面	<u> </u>	先修课程	无机化*	学实验			
总学时	24 学分		1.5	理论学时	0			
实验学时/实训	学时/ 实践学師	寸/上机学时		实验学时: 24				
	开课单位			城建与环境学院				

二、课程简介

《分析化学实验》是环境工程专业一门学科基础必修课的实践课,与分析化学理论课教学紧密结合的独立课程,是培养学生实际工作技能和技巧的一个重要手段。通过《分析化学实验》课程的教学,加深学生对分析化学基础理论、基本知识的理解,正确和较熟练地掌握分析化学实验技能和分析仪器的基本操作,提高观察、分析和解决问题的能力,培养学生严谨的工作作风和实事求是的科学态度,树立严格的"量"的概念,为学习后续课程和将来从事分析、检测工作及科学研究打下良好的基础。

三、课程教学目标

	课程教学目标	支撑人才培养规格指标点	支撑人才培养规 格
知识目标	目标1: 通过选定的实验项目,巩固并加深对分析化学基本概念和基本理论的理解,掌握分析化学实验的基本操作规程和技能。掌握滴定分析和样品检验方法,并掌握各种分析仪器的操作。	4-2: 针对复杂环境工程问题,能够运用化学、化工、微生物、物理等与环境工程相关领域的科学原理,合理分解、设计实验、选用适合的研究仪器和设备,制订研究计划和技术路线。	4. 分析工程问题的能力
能力	目标2: 学会正确地记录基本仪器测量的实	4-3:对研究所获得的数据 能够进行科学合理的分析	4. 分析工程问题

目标	验数据,能运用分析化学的基本原理正确地处理数据,表达实验结果。培养和提高学生的动手能力,具有分析、解决实际问题的能力。	与解释,准确说明问题的 关键;	的能力
素质目标	目标3: 培养学生主动参与、独立思考、分析问题、解决问题和一定的创新能力。 培养学生崇尚科学、实事求是、严谨认 真的科学态度和职业道德。	2-1: 能够综合运用各种手 段查阅文献、获取信息, 能够通过文献分析和团队 讨论,综合形成全面认 识。	2.综合素质能力

四、课程主要教学内容、学时安排及教学策略

实践	项目名称	学	主要教学内容	项目	项目	支撑课
类型	·NH · H·M·	时	T>42,114.	类型	要求	程目标
实验	分析天平 的称量练 习	3	重点:分析天平的使用及常用的称量方法。 难点:差减法称量。 思政元素:介绍数据记录与处理的重要性,引导学生形成正确的人生观、价值观;要求学生处理实验数据必须坚持实事求是,严谨的科学态度。	验证	实验2人作,实验2人作,实验2人作,实完成。 报告的 对 对	目标1目标3
实验	H ₂ SO ₄ 和 H ₃ PO ₄ 混合 酸的电位 滴定	3	重点:标准溶液的标定;酸度计的使用;滴定准确操作。 难点: pH-V曲线和 (Δ pH/Δ V) - V曲线与二级微商法确定滴定终点。 思政元素:介绍通过实操强化理论的观念,要求学生实验过程中主动思考理论原理,在实验过程中去验证实验原理,使理论与实践相辅相成。	综合	实验2人一 组,合作完 成实验,独 立完成实验 报告。实有详 细的实验验 结果进行分 析。	目标1 目标2 目标3
实验	水中硬度 的测定	3	重点: EDTA 标准溶液的配制和标定方法; 常用金属指示剂及变色原理的应用。 难点: 络合滴定的条件控制与终点判断。	验证	实验2人一组,合作完成实验,独立完成实验报告。实验报告。实验报告。实验报告须有详细的实验记录、对实验	目标1目标3

					结果进行分	
实验	水中氯离子的测定	3	重点: 硝酸银标准溶液的配制和标定方法; 铬酸钾指示剂的正确使用。 难点: 莫尔法滴定的原理和操作方法。	验证	析。 实是是一个,是是一个,是是一个,是是一个,是是是一个,是是一个,是是一个,是是一	目标1目标3
实验	直接碘量法测定维生素C	3	重点: 碘标准溶液的配制和标定方法; 直接碘量法的原理和操作方法。 难点: 氧化还原滴定的过程及操作。	综合	实验2人一 组,合作完 成实成,实成 实完成。实有 报告。须实验 报告。实验 报告。实验 ,实验 ,实验 ,实验 ,实验 ,实验 ,实验 ,实验 ,实验 ,实验 ,	目标1目标3
实验	邻二氮菲 分光光度 法测定铁 的含量	3	重点: 标准曲线法;分光光度计的操作;分光光度法的基本原理;数据处理。 难点: 标准曲线的绘制;数据处理。	验证	实验2人一 组,合作完 成实验,独 立完成实验 报告。实有详 报告须有详 细的实验验 结果进行分 析。	目标1 目标2 目标3
实验	紫外分光 光度 天 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	3	重点:物质的紫外吸收曲线;紫外光谱法定性分析的基本原理;定量测定的原理;紫外分光光度计的操作。 难点:利用紫外吸收曲线进行定性分析的原理;定量分析。	验证	实验2人一 组,合作完 成实验,如 立完成。实成 报告。实 报告须实验 报告统实验 证 报告,实 致 致 致 , 数 , 数 , 数 , 数 , 数 , 数 。 有 , 时 。 以 。 对 。 对 。 的 、 对 。 的 、 对 。 的 、 , 、 , 、 , 、 , 、 , 、 析 。 , 、 析 。 , 、 , 、 , 、 , 、 , 、 , 、 , 、 , 、 , 、 ,	目标1 目标2 目标3

实验	加碘食盐 调查及其 中碘含量 的测定	重点: 学会实验方案的设计,查找资料文献;规范实验操作。 难点: 方案的设计。 思政元素: 介绍实验设计与理论相 联系,要求学生实验设计过程中, 分工合作,主动参与,积极独立思 考,突出解决生产实际问题的能力 及其重要性。	设计	实验2人一 组,设计合 理的实验。 案,合作。 成实验。 成实验。 验报告实验。 说明的实验。 说明的实验, 证明, 证明, 证明, 证明, 证明, 证明, 证明, 证明, 证明, 证明	目标1 目标2 目标3
----	--------------------	---	----	---	-------------------

五、学生学习成效评估方式及标准

考核与评价是对课程教学目标中的知识目标、能力目标和素质目标等进行综合评价。在本课程中,学生的最终成绩是由实验报告、考勤及课堂表现及实验考核成绩等三个部分组成。

总成绩:采用百分制。总成绩分为实验报告(占70%)、考勤及课堂表现(占10%)和实验考核(占20%)三个部分。评分标准如下表:

	评 分 标 准
等级	1.实验报告; 2.考勤及课堂表现; 3.实验考核
90~100分	1. 实验报告按时完成,内容全面完整,字迹清晰、工整,数据记录、处理、计算、作图正确,对实验结果分析合理。
	2. 实验安全、仪器使用、实验操作、数据记录和处理规范;熟练掌握实验流程和操作;台面整洁、节约环保;每次课能按时上课,无迟到早退。
	3. 理解及表述清楚, 计算过程正确, 实验方案设计合理, 数据处理科学规范; 方案格式规范, 大方美观, 能体现实事求是、严谨认真的科学
	态度。操作规范,步骤合理清晰,在规定的时间完成实验,结果读数和 准确度符合要求。
80~89分	1. 实验报告能按时完成,内容基本完整,能够辨识,数据记录、处理、计算、作图基本正确,对实验结果分析基本合理。
	2. 实验安全、仪器使用、实验操作、数据记录和处理符合要求;基本 熟练掌握实验流程和操作,台面整洁、节约环保;基本能按时上课,旷 课节数小于或等于2节内,或迟到/早退次数在4次以下。
	3. 理解及表述较清楚, 计算过程较正确, 实验方案设计较合理, 数据处理科学较规范。方案格式较规范美观, 较能体现实事求是、严谨认真
	的科学态度。能按要求较完整完成操作,实验过程安排较为合理,在规 定时间完成实验。
70~79分	1. 实验报告能按时完成,内容部分欠缺,但能够辨识,数据记录、处理、计算、作图出现部分错误,对实验结果分析出现部分错误。
	2. 实验安全、仪器使用、实验操作、数据记录和处理基本符合要求; 基本掌握实验流程和操作; 基本能按时上课, 旷课节数小于或等于3节

	内,或迟到早退次数在或6次以内。
	3. 理解及表述基本清楚, 计算过程基本正确, 实验方案设计基本合
	理,数据处理科学基本规范。方案格式基本规范美观,基本能体现实事
	求是、严谨认真的科学态度。基本能按要求进行操作,实验部分步骤安
	排不合理,完成实验时间稍为滞后。
60~69分	1. 后期补交,内容部分欠缺,但能够辨识,数据记录、处理、计算、作
	图出现部分错误,对实验结果分析出现部分错误。
	2. 实验安全、仪器使用、实验操作、数据记录和处理基本符合要求; 只
	参与部分(60%以上)的实验操作,基本听从实验安排,还存在部分错
	误;基本能按时上课,旷课次数小于或等于4节内,或迟到早退次数在8
	次以内。
	3. 理解及表述基本清楚, 计算过程基本正确, 实验方案设计存在部分
	不合理,数据处理科学不够规范。方案格式基本规范美观,基本能体现
	实事求是、严谨认真的科学态度。基本能按要求进行操作,实验部分步
	骤安排不合理,实验过程部分操作不规范。
60以下	1. 未提交,内容不完整,不能辨识,数据记录、处理、计算、作图出现
	大部分错误,未对实验结果进行分析或分析基本全部错误。
	2. 实验安全、仪器使用、实验操作、数据记录和处理不符合要求; 胡乱
	进行实验流程和操作; 多次迟到早退、或旷课。
	3. 理解及表述不清楚,计算过程不正确,实验方案设计不合理,数据
	处理科学不规范。方案格式不规范美观,不能体现实事求是、严谨认真
	的科学态度。操作不规范,实验步骤不合理,未在规定的时间内完成实
	验。
	•

六、 教学安排及要求

序号	教学安排事项	要求
1	授课教师	职称:副教授、讲师、实验师 学历(位):研究生、本科 其他:
2	课程时间	周次: 5-12 节次: 3
3	授课地点	□教室 □室外场地 □其他:
4	学生辅导	线上方式及时间安排:相关平台(课前、课后) 线下地点及时间安排:实验室、教师办公室(课后)

七、选用教材

自编实验讲义

八、参考资料

[1]武汉大学.分析化学实验(上册,第6版)[M].北京:高等教育出版社,2021年6月.

[2]武汉大学.分析化学(上册,第6版)[M].北京:高等教育出版社,2016年12月.

[3]孙玉凤.分析化学实验[M].北京:清华大学出版社,2020年1月.

[4]黄荣斌.工科分析化学实验[M]. 北京:高等教育出版社,2020年5月.

[5]唐意红.分析化学实验[M].上海:上海交通大学出版社,2021年7月.

[6]孙丹.无机与分析化学实验[M].北京: 化学工业出版社,2021年8月.

网络资料

[1]分析测试百科网, https://www.antpedia.com/

[2]仪器信息网, https://www.instrument.com.cn/

大纲执笔人: 苏小欢

讨论参与人:郭文显、蔡志泉

系(教研室)主任:张东

学院(部)审核人: ***